MakeItFrom.com
Menu (ESC)

C84000 Brass vs. S32205 Stainless Steel

C84000 brass belongs to the copper alloys classification, while S32205 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C84000 brass and the bottom bar is S32205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
260
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 27
28
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 250
740
Tensile Strength: Yield (Proof), MPa 140
510

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1070
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 940
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 72
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
18
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.7
Embodied Energy, MJ/kg 49
50
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
190
Resilience: Unit (Modulus of Resilience), kJ/m3 83
630
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.2
26
Strength to Weight: Bending, points 10
23
Thermal Diffusivity, mm2/s 22
4.0
Thermal Shock Resistance, points 9.0
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 23
Copper (Cu), % 82 to 89
0
Iron (Fe), % 0 to 0.4
63.7 to 70.4
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0.5 to 2.0
4.5 to 6.5
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0.1 to 0.65
0 to 0.020
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 5.0 to 14
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0