MakeItFrom.com
Menu (ESC)

C84000 Brass vs. S41003 Stainless Steel

C84000 brass belongs to the copper alloys classification, while S41003 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C84000 brass and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 27
21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 250
520
Tensile Strength: Yield (Proof), MPa 140
310

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 170
720
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 940
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 72
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 17
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
7.0
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.9
Embodied Energy, MJ/kg 49
27
Embodied Water, L/kg 330
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
92
Resilience: Unit (Modulus of Resilience), kJ/m3 83
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.2
19
Strength to Weight: Bending, points 10
18
Thermal Diffusivity, mm2/s 22
7.2
Thermal Shock Resistance, points 9.0
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 82 to 89
0
Iron (Fe), % 0 to 0.4
83.4 to 89.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.5
Nickel (Ni), % 0.5 to 2.0
0 to 1.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0.1 to 0.65
0 to 0.030
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 5.0 to 14
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0