MakeItFrom.com
Menu (ESC)

C84100 Brass vs. AISI 202 Stainless Steel

C84100 brass belongs to the copper alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C84100 brass and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
210 to 300
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
14 to 45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 230
700 to 980
Tensile Strength: Yield (Proof), MPa 81
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
910
Melting Completion (Liquidus), °C 1000
1400
Melting Onset (Solidus), °C 810
1360
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 48
40
Embodied Water, L/kg 340
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 30
250 to 840
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 7.4
25 to 35
Strength to Weight: Bending, points 9.7
23 to 29
Thermal Diffusivity, mm2/s 33
4.0
Thermal Shock Resistance, points 7.8
15 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.050
0
Bismuth (Bi), % 0 to 0.090
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 78 to 85
0
Iron (Fe), % 0 to 0.3
63.5 to 71.5
Lead (Pb), % 0.050 to 0.25
0
Manganese (Mn), % 0
7.5 to 10
Nickel (Ni), % 0 to 0.5
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.050
0 to 0.060
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 4.5
0
Zinc (Zn), % 12 to 20
0
Residuals, % 0 to 0.5
0