MakeItFrom.com
Menu (ESC)

C84100 Brass vs. Grade C-5 Titanium

C84100 brass belongs to the copper alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C84100 brass and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
310
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
6.7
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 39
40
Tensile Strength: Ultimate (UTS), MPa 230
1000
Tensile Strength: Yield (Proof), MPa 81
940

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 160
340
Melting Completion (Liquidus), °C 1000
1610
Melting Onset (Solidus), °C 810
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 110
7.1
Thermal Expansion, µm/m-K 19
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.5
4.4
Embodied Carbon, kg CO2/kg material 2.9
38
Embodied Energy, MJ/kg 48
610
Embodied Water, L/kg 340
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
66
Resilience: Unit (Modulus of Resilience), kJ/m3 30
4200
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 7.4
63
Strength to Weight: Bending, points 9.7
50
Thermal Diffusivity, mm2/s 33
2.9
Thermal Shock Resistance, points 7.8
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
5.5 to 6.8
Antimony (Sb), % 0 to 0.050
0
Bismuth (Bi), % 0 to 0.090
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 78 to 85
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.3
0 to 0.4
Lead (Pb), % 0.050 to 0.25
0
Nickel (Ni), % 0 to 0.5
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.010
0
Tin (Sn), % 1.5 to 4.5
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 12 to 20
0
Residuals, % 0 to 0.5
0 to 0.4