MakeItFrom.com
Menu (ESC)

C84400 Valve Metal vs. Grade CX2M Nickel

C84400 valve metal belongs to the copper alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C84400 valve metal and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
220
Elongation at Break, % 19
45
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
84
Tensile Strength: Ultimate (UTS), MPa 230
550
Tensile Strength: Yield (Proof), MPa 110
310

Thermal Properties

Latent Heat of Fusion, J/g 180
330
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 1000
1500
Melting Onset (Solidus), °C 840
1450
Specific Heat Capacity, J/kg-K 370
430
Thermal Conductivity, W/m-K 72
10
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
65
Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 2.8
12
Embodied Energy, MJ/kg 46
160
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
210
Resilience: Unit (Modulus of Resilience), kJ/m3 58
220
Stiffness to Weight: Axial, points 6.6
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 7.2
18
Strength to Weight: Bending, points 9.4
17
Thermal Diffusivity, mm2/s 22
2.7
Thermal Shock Resistance, points 8.3
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.4
0 to 1.5
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0 to 1.0
56.4 to 63
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.020
Tin (Sn), % 2.3 to 3.5
0
Zinc (Zn), % 7.0 to 10
0
Residuals, % 0 to 0.7
0