MakeItFrom.com
Menu (ESC)

C84400 Valve Metal vs. SAE-AISI 1050 Steel

C84400 valve metal belongs to the copper alloys classification, while SAE-AISI 1050 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C84400 valve metal and the bottom bar is SAE-AISI 1050 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 19
11 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
72
Tensile Strength: Ultimate (UTS), MPa 230
690 to 790
Tensile Strength: Yield (Proof), MPa 110
390 to 650

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 840
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 72
51
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 46
18
Embodied Water, L/kg 340
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 58
400 to 1130
Stiffness to Weight: Axial, points 6.6
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.2
25 to 28
Strength to Weight: Bending, points 9.4
22 to 24
Thermal Diffusivity, mm2/s 22
14
Thermal Shock Resistance, points 8.3
22 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.48 to 0.55
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.4
98.5 to 98.9
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0 to 0.050
Tin (Sn), % 2.3 to 3.5
0
Zinc (Zn), % 7.0 to 10
0
Residuals, % 0 to 0.7
0