MakeItFrom.com
Menu (ESC)

C84400 Valve Metal vs. N06603 Nickel

C84400 valve metal belongs to the copper alloys classification, while N06603 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C84400 valve metal and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 19
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
76
Tensile Strength: Ultimate (UTS), MPa 230
740
Tensile Strength: Yield (Proof), MPa 110
340

Thermal Properties

Latent Heat of Fusion, J/g 180
320
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 1000
1340
Melting Onset (Solidus), °C 840
1300
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 72
11
Thermal Expansion, µm/m-K 19
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 17
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
50
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 2.8
8.4
Embodied Energy, MJ/kg 46
120
Embodied Water, L/kg 340
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
170
Resilience: Unit (Modulus of Resilience), kJ/m3 58
300
Stiffness to Weight: Axial, points 6.6
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.2
25
Strength to Weight: Bending, points 9.4
22
Thermal Diffusivity, mm2/s 22
2.9
Thermal Shock Resistance, points 8.3
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
2.4 to 3.0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 78 to 82
0 to 0.5
Iron (Fe), % 0 to 0.4
8.0 to 11
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0 to 1.0
57.7 to 65.6
Phosphorus (P), % 0 to 1.5
0 to 0.2
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 2.3 to 3.5
0
Titanium (Ti), % 0
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 7.0 to 10
0.010 to 0.1
Residuals, % 0 to 0.7
0