MakeItFrom.com
Menu (ESC)

C84800 Brass vs. C70400 Copper-nickel

Both C84800 brass and C70400 copper-nickel are copper alloys. They have 77% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C84800 brass and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 39
45
Tensile Strength: Ultimate (UTS), MPa 230
300 to 310
Tensile Strength: Yield (Proof), MPa 100
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 150
210
Melting Completion (Liquidus), °C 950
1120
Melting Onset (Solidus), °C 830
1060
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 72
64
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
14
Electrical Conductivity: Equal Weight (Specific), % IACS 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 27
32
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 46
47
Embodied Water, L/kg 340
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 53
38 to 220
Stiffness to Weight: Axial, points 6.6
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.3
9.3 to 9.8
Strength to Weight: Bending, points 9.6
11 to 12
Thermal Diffusivity, mm2/s 23
18
Thermal Shock Resistance, points 8.2
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 75 to 77
89.8 to 93.6
Iron (Fe), % 0 to 0.4
1.3 to 1.7
Lead (Pb), % 5.5 to 7.0
0 to 0.050
Manganese (Mn), % 0
0.3 to 0.8
Nickel (Ni), % 0 to 1.0
4.8 to 6.2
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 2.0 to 3.0
0
Zinc (Zn), % 13 to 17
0 to 1.0
Residuals, % 0 to 0.7
0 to 0.5