MakeItFrom.com
Menu (ESC)

C85200 Brass vs. ACI-ASTM CT15C Steel

C85200 brass belongs to the copper alloys classification, while ACI-ASTM CT15C steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85200 brass and the bottom bar is ACI-ASTM CT15C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 28
23
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 270
500
Tensile Strength: Yield (Proof), MPa 95
190

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 140
1080
Melting Completion (Liquidus), °C 940
1410
Melting Onset (Solidus), °C 930
1360
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
12
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 19
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
36
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 2.8
6.1
Embodied Energy, MJ/kg 46
88
Embodied Water, L/kg 330
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
90
Resilience: Unit (Modulus of Resilience), kJ/m3 42
93
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 8.9
17
Strength to Weight: Bending, points 11
17
Thermal Diffusivity, mm2/s 27
3.2
Thermal Shock Resistance, points 9.3
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 70 to 74
0
Iron (Fe), % 0 to 0.6
40.3 to 49.2
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
0.15 to 1.5
Nickel (Ni), % 0 to 1.0
31 to 34
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.050
0.15 to 1.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0.7 to 2.0
0
Zinc (Zn), % 20 to 27
0
Residuals, % 0 to 0.9
0