MakeItFrom.com
Menu (ESC)

C85200 Brass vs. C11100 Copper

Both C85200 brass and C11100 copper are copper alloys. They have 72% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C85200 brass and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 28
1.5
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 270
460
Tensile Strength: Yield (Proof), MPa 95
420

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 140
200
Melting Completion (Liquidus), °C 940
1080
Melting Onset (Solidus), °C 930
1070
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 84
390
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
100
Electrical Conductivity: Equal Weight (Specific), % IACS 19
100

Otherwise Unclassified Properties

Base Metal Price, % relative 26
31
Density, g/cm3 8.4
9.0
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 42
750
Stiffness to Weight: Axial, points 7.0
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 8.9
14
Strength to Weight: Bending, points 11
15
Thermal Diffusivity, mm2/s 27
110
Thermal Shock Resistance, points 9.3
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 70 to 74
99.9 to 100
Iron (Fe), % 0 to 0.6
0
Lead (Pb), % 1.5 to 3.8
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0.7 to 2.0
0
Zinc (Zn), % 20 to 27
0
Residuals, % 0 to 0.9
0 to 0.1