MakeItFrom.com
Menu (ESC)

C85400 Brass vs. ACI-ASTM CE3MN Steel

C85400 brass belongs to the copper alloys classification, while ACI-ASTM CE3MN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85400 brass and the bottom bar is ACI-ASTM CE3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 23
20
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 220
770
Tensile Strength: Yield (Proof), MPa 85
590

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 940
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 89
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
21
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.2
Embodied Energy, MJ/kg 46
58
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
140
Resilience: Unit (Modulus of Resilience), kJ/m3 35
840
Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 7.5
27
Strength to Weight: Bending, points 9.9
24
Thermal Diffusivity, mm2/s 28
4.1
Thermal Shock Resistance, points 7.6
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 65 to 70
0
Iron (Fe), % 0 to 0.7
58.1 to 65.9
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 1.0
6.0 to 8.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 24 to 32
0
Residuals, % 0 to 1.1
0