MakeItFrom.com
Menu (ESC)

C85400 Brass vs. C87900 Brass

Both C85400 brass and C87900 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 95% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C85400 brass and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 23
25
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 220
480
Tensile Strength: Yield (Proof), MPa 85
240

Thermal Properties

Latent Heat of Fusion, J/g 180
190
Maximum Temperature: Mechanical, °C 130
130
Melting Completion (Liquidus), °C 940
930
Melting Onset (Solidus), °C 940
900
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 89
120
Thermal Expansion, µm/m-K 20
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
15
Electrical Conductivity: Equal Weight (Specific), % IACS 22
17

Otherwise Unclassified Properties

Base Metal Price, % relative 25
24
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 46
46
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
100
Resilience: Unit (Modulus of Resilience), kJ/m3 35
270
Stiffness to Weight: Axial, points 7.0
7.3
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 7.5
17
Strength to Weight: Bending, points 9.9
17
Thermal Diffusivity, mm2/s 28
37
Thermal Shock Resistance, points 7.6
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.35
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 65 to 70
63 to 69.2
Iron (Fe), % 0 to 0.7
0 to 0.4
Lead (Pb), % 1.5 to 3.8
0 to 0.25
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0 to 1.0
0 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.050
0.8 to 1.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.5 to 1.5
0 to 0.25
Zinc (Zn), % 24 to 32
30 to 36
Residuals, % 0 to 1.1
0