MakeItFrom.com
Menu (ESC)

C85400 Brass vs. S44800 Stainless Steel

C85400 brass belongs to the copper alloys classification, while S44800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85400 brass and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
190
Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 23
23
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
82
Tensile Strength: Ultimate (UTS), MPa 220
590
Tensile Strength: Yield (Proof), MPa 85
450

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 940
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 89
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 22
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
19
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.8
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 330
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
120
Resilience: Unit (Modulus of Resilience), kJ/m3 35
480
Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 7.5
21
Strength to Weight: Bending, points 9.9
20
Thermal Diffusivity, mm2/s 28
4.6
Thermal Shock Resistance, points 7.6
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 65 to 70
0 to 0.15
Iron (Fe), % 0 to 0.7
62.6 to 66.5
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0 to 1.0
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 24 to 32
0
Residuals, % 0 to 1.1
0