MakeItFrom.com
Menu (ESC)

C85400 Brass vs. Z40101 Zinc

C85400 brass belongs to the copper alloys classification, while Z40101 zinc belongs to the zinc alloys. They have a modest 28% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C85400 brass and the bottom bar is Z40101 zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
87
Elongation at Break, % 23
44
Poisson's Ratio 0.32
0.25
Shear Modulus, GPa 40
35
Tensile Strength: Ultimate (UTS), MPa 220
130
Tensile Strength: Yield (Proof), MPa 85
110

Thermal Properties

Latent Heat of Fusion, J/g 180
110
Maximum Temperature: Mechanical, °C 130
90
Melting Completion (Liquidus), °C 940
410
Melting Onset (Solidus), °C 940
400
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 89
110
Thermal Expansion, µm/m-K 20
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
27
Electrical Conductivity: Equal Weight (Specific), % IACS 22
37

Otherwise Unclassified Properties

Base Metal Price, % relative 25
11
Density, g/cm3 8.3
6.6
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 46
53
Embodied Water, L/kg 330
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
56
Resilience: Unit (Modulus of Resilience), kJ/m3 35
69
Stiffness to Weight: Axial, points 7.0
7.4
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 7.5
5.7
Strength to Weight: Bending, points 9.9
8.9
Thermal Diffusivity, mm2/s 28
44
Thermal Shock Resistance, points 7.6
4.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.35
0 to 0.010
Cadmium (Cd), % 0
0 to 0.0050
Copper (Cu), % 65 to 70
0.080 to 0.4
Iron (Fe), % 0 to 0.7
0 to 0.010
Lead (Pb), % 1.5 to 3.8
0 to 0.010
Nickel (Ni), % 0 to 1.0
0
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0.5 to 1.5
0 to 0.0030
Titanium (Ti), % 0
0 to 0.020
Zinc (Zn), % 24 to 32
99.542 to 99.92
Residuals, % 0 to 1.1
0