MakeItFrom.com
Menu (ESC)

C85500 Brass vs. AWS ENiCrFe-2

C85500 brass belongs to the copper alloys classification, while AWS ENiCrFe-2 belongs to the nickel alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C85500 brass and the bottom bar is AWS ENiCrFe-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
28
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 410
790

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Melting Completion (Liquidus), °C 900
1390
Melting Onset (Solidus), °C 890
1350
Specific Heat Capacity, J/kg-K 390
450
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
65
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 2.7
11
Embodied Energy, MJ/kg 46
160
Embodied Water, L/kg 320
260

Common Calculations

Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 14
26
Strength to Weight: Bending, points 15
22
Thermal Shock Resistance, points 14
24

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
13 to 17
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 59 to 63
0 to 0.5
Iron (Fe), % 0 to 0.2
0 to 12
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.2
1.0 to 3.5
Molybdenum (Mo), % 0
0.5 to 2.5
Nickel (Ni), % 0 to 0.2
62 to 85
Niobium (Nb), % 0
0.5 to 4.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 35.1 to 41
0
Residuals, % 0
0 to 0.5