MakeItFrom.com
Menu (ESC)

C85700 Brass vs. EN 1.5113 Steel

C85700 brass belongs to the copper alloys classification, while EN 1.5113 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is EN 1.5113 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
11 to 18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 310
580 to 900
Tensile Strength: Yield (Proof), MPa 110
320 to 770

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 910
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 25
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 330
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
91 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 59
270 to 1570
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 11
21 to 32
Strength to Weight: Bending, points 13
20 to 27
Thermal Diffusivity, mm2/s 27
14
Thermal Shock Resistance, points 10
17 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.7
97 to 97.5
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
1.6 to 1.8
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0.9 to 1.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0