MakeItFrom.com
Menu (ESC)

C85700 Brass vs. C26800 Brass

Both C85700 brass and C26800 brass are copper alloys. They have a moderately high 95% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is C26800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 310
310 to 650

Thermal Properties

Latent Heat of Fusion, J/g 170
180
Maximum Temperature: Mechanical, °C 120
130
Melting Completion (Liquidus), °C 940
930
Melting Onset (Solidus), °C 910
900
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 84
120
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
27
Electrical Conductivity: Equal Weight (Specific), % IACS 25
30

Otherwise Unclassified Properties

Base Metal Price, % relative 24
24
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 330
320

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 11
11 to 22
Strength to Weight: Bending, points 13
13 to 21
Thermal Diffusivity, mm2/s 27
37
Thermal Shock Resistance, points 10
10 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.8
0
Copper (Cu), % 58 to 64
64 to 68.5
Iron (Fe), % 0 to 0.7
0 to 0.050
Lead (Pb), % 0.8 to 1.5
0 to 0.15
Nickel (Ni), % 0 to 1.0
0
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 32 to 40
31 to 36
Residuals, % 0 to 1.3
0 to 0.3