MakeItFrom.com
Menu (ESC)

C85800 Brass vs. C41300 Brass

Both C85800 brass and C41300 brass are copper alloys. They have 72% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 15
2.0 to 44
Poisson's Ratio 0.31
0.33
Rockwell B Hardness 56
53 to 88
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 380
300 to 630
Tensile Strength: Yield (Proof), MPa 210
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 170
200
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 900
1040
Melting Onset (Solidus), °C 870
1010
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 84
130
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
30
Electrical Conductivity: Equal Weight (Specific), % IACS 22
31

Otherwise Unclassified Properties

Base Metal Price, % relative 24
29
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 47
44
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 210
69 to 1440
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 13
9.6 to 20
Strength to Weight: Bending, points 15
11 to 19
Thermal Diffusivity, mm2/s 27
40
Thermal Shock Resistance, points 13
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 57 to 69
89 to 93
Iron (Fe), % 0 to 0.5
0 to 0.050
Lead (Pb), % 0 to 1.5
0 to 0.1
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 1.5
0.7 to 1.3
Zinc (Zn), % 31 to 41
5.1 to 10.3
Residuals, % 0 to 1.3
0 to 0.5