MakeItFrom.com
Menu (ESC)

C85900 Brass vs. ACI-ASTM CG8M Steel

C85900 brass belongs to the copper alloys classification, while ACI-ASTM CG8M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is ACI-ASTM CG8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
180
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 30
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 460
550
Tensile Strength: Yield (Proof), MPa 190
300

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 130
1020
Melting Completion (Liquidus), °C 830
1450
Melting Onset (Solidus), °C 790
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
16
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
20
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
4.1
Embodied Energy, MJ/kg 49
56
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170
220
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
19
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 29
4.3
Thermal Shock Resistance, points 16
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
58.8 to 70
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 1.5
9.0 to 13
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.5
Sulfur (S), % 0.1 to 0.65
0 to 0.040
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0