MakeItFrom.com
Menu (ESC)

C85900 Brass vs. AWS E410

C85900 brass belongs to the copper alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 30
23
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 460
580
Tensile Strength: Yield (Proof), MPa 190
440

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Melting Completion (Liquidus), °C 830
1450
Melting Onset (Solidus), °C 790
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 89
28
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 28
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
7.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.0
Embodied Energy, MJ/kg 49
28
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
500
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 29
7.5
Thermal Shock Resistance, points 16
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 58 to 62
0 to 0.75
Iron (Fe), % 0 to 0.5
82.2 to 89
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 1.5
0 to 0.7
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.9
Sulfur (S), % 0.1 to 0.65
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0