MakeItFrom.com
Menu (ESC)

C85900 Brass vs. C43000 Brass

Both C85900 brass and C43000 brass are copper alloys. They have 73% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 30
3.0 to 55
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 460
320 to 710
Tensile Strength: Yield (Proof), MPa 190
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 830
1030
Melting Onset (Solidus), °C 790
1000
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 89
120
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
27
Electrical Conductivity: Equal Weight (Specific), % IACS 28
28

Otherwise Unclassified Properties

Base Metal Price, % relative 24
29
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 49
46
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 170
82 to 1350
Stiffness to Weight: Axial, points 7.3
7.1
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 16
10 to 23
Strength to Weight: Bending, points 17
12 to 20
Thermal Diffusivity, mm2/s 29
36
Thermal Shock Resistance, points 16
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Copper (Cu), % 58 to 62
84 to 87
Iron (Fe), % 0 to 0.5
0 to 0.050
Lead (Pb), % 0 to 0.090
0 to 0.1
Manganese (Mn), % 0 to 0.010
0
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0.1 to 0.65
0
Tin (Sn), % 0 to 1.5
1.7 to 2.7
Zinc (Zn), % 31 to 41
9.7 to 14.3
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0 to 0.5