MakeItFrom.com
Menu (ESC)

C85900 Brass vs. S44725 Stainless Steel

C85900 brass belongs to the copper alloys classification, while S44725 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
180
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 30
22
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 460
500
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 830
1450
Melting Onset (Solidus), °C 790
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 89
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
15
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.9
3.1
Embodied Energy, MJ/kg 49
44
Embodied Water, L/kg 330
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
99
Resilience: Unit (Modulus of Resilience), kJ/m3 170
240
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 29
4.6
Thermal Shock Resistance, points 16
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
25 to 28.5
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
67.6 to 73.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 0.4
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 1.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.040
Sulfur (S), % 0.1 to 0.65
0 to 0.020
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
0 to 0.26
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0