MakeItFrom.com
Menu (ESC)

C86100 Bronze vs. AWS ER80S-B8

C86100 bronze belongs to the copper alloys classification, while AWS ER80S-B8 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C86100 bronze and the bottom bar is AWS ER80S-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
19
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 660
630
Tensile Strength: Yield (Proof), MPa 350
530

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
26
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
6.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.0
Embodied Energy, MJ/kg 49
28
Embodied Water, L/kg 350
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 530
720
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23
22
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 10
6.9
Thermal Shock Resistance, points 21
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 66 to 68
0 to 0.35
Iron (Fe), % 2.0 to 4.0
85.6 to 90.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 2.5 to 5.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 17.3 to 25
0
Residuals, % 0
0 to 0.5