MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. A206.0 Aluminum

C86200 bronze belongs to the copper alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C86200 bronze and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 21
4.2 to 10
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 710
390 to 440
Tensile Strength: Yield (Proof), MPa 350
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 190
390
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 940
670
Melting Onset (Solidus), °C 900
550
Specific Heat Capacity, J/kg-K 410
880
Thermal Conductivity, W/m-K 35
130
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
30
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
90

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 2.9
8.0
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 340
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 540
440 to 1000
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
46
Strength to Weight: Axial, points 25
36 to 41
Strength to Weight: Bending, points 22
39 to 43
Thermal Diffusivity, mm2/s 11
48
Thermal Shock Resistance, points 23
17 to 19

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
93.9 to 95.7
Copper (Cu), % 60 to 66
4.2 to 5.0
Iron (Fe), % 2.0 to 4.0
0 to 0.1
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 2.5 to 5.0
0 to 0.2
Nickel (Ni), % 0 to 1.0
0 to 0.050
Silicon (Si), % 0
0 to 0.050
Tin (Sn), % 0 to 0.2
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 22 to 28
0 to 0.1
Residuals, % 0
0 to 0.15