MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. AISI 201LN Stainless Steel

C86200 bronze belongs to the copper alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
25 to 51
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 710
740 to 1060
Tensile Strength: Yield (Proof), MPa 350
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 940
1410
Melting Onset (Solidus), °C 900
1370
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 35
15
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 49
38
Embodied Water, L/kg 340
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 540
310 to 1520
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 25
27 to 38
Strength to Weight: Bending, points 22
24 to 30
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 23
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 60 to 66
0 to 1.0
Iron (Fe), % 2.0 to 4.0
67.9 to 73.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
6.4 to 7.5
Nickel (Ni), % 0 to 1.0
4.0 to 5.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0