MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. AWS BNi-10

C86200 bronze belongs to the copper alloys classification, while AWS BNi-10 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is AWS BNi-10.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 710
600

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Melting Completion (Liquidus), °C 940
1110
Melting Onset (Solidus), °C 900
970
Specific Heat Capacity, J/kg-K 410
440
Thermal Expansion, µm/m-K 20
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
80
Density, g/cm3 8.0
9.4
Embodied Carbon, kg CO2/kg material 2.9
11
Embodied Energy, MJ/kg 49
160
Embodied Water, L/kg 340
230

Common Calculations

Stiffness to Weight: Axial, points 7.8
12
Stiffness to Weight: Bending, points 20
21
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
17
Thermal Shock Resistance, points 23
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.9
0 to 0.050
Boron (B), % 0
2.0 to 3.0
Carbon (C), % 0
0.4 to 0.55
Chromium (Cr), % 0
10 to 13
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
2.5 to 4.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0
Nickel (Ni), % 0 to 1.0
57.2 to 67.1
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
3.0 to 4.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.050
Tungsten (W), % 0
15 to 17
Zinc (Zn), % 22 to 28
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0 to 1.0
0 to 0.5