MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. EN 1.6368 Steel

C86200 bronze belongs to the copper alloys classification, while EN 1.6368 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
18
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 710
660 to 690
Tensile Strength: Yield (Proof), MPa 350
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 35
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.4
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 49
22
Embodied Water, L/kg 340
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
580 to 650
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 25
23 to 24
Strength to Weight: Bending, points 22
21 to 22
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 23
20

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0.015 to 0.040
Carbon (C), % 0
0 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 60 to 66
0.5 to 0.8
Iron (Fe), % 2.0 to 4.0
95.1 to 97.2
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0 to 1.0
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0