MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. N08024 Nickel

C86200 bronze belongs to the copper alloys classification, while N08024 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 710
620
Tensile Strength: Yield (Proof), MPa 350
270

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 940
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 410
460
Thermal Conductivity, W/m-K 35
12
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
41
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.9
7.2
Embodied Energy, MJ/kg 49
99
Embodied Water, L/kg 340
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
170
Resilience: Unit (Modulus of Resilience), kJ/m3 540
180
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 23
15

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 60 to 66
0.5 to 1.5
Iron (Fe), % 2.0 to 4.0
26.6 to 38.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0 to 1.0
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0