MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. ACI-ASTM CA40 Steel

C86300 bronze belongs to the copper alloys classification, while ACI-ASTM CA40 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is ACI-ASTM CA40 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
310
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
10
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 850
910
Tensile Strength: Yield (Proof), MPa 480
860

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
750
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 890
1500
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
7.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.0
Embodied Energy, MJ/kg 51
28
Embodied Water, L/kg 360
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
89
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
1910
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
33
Strength to Weight: Bending, points 25
27
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 28
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
81.5 to 88.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0