MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. ACI-ASTM CF16Fa Steel

C86300 bronze belongs to the copper alloys classification, while ACI-ASTM CF16Fa steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is ACI-ASTM CF16Fa steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
28
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 850
540
Tensile Strength: Yield (Proof), MPa 480
230

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 920
1420
Melting Onset (Solidus), °C 890
1370
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
16
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
17
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.3
Embodied Energy, MJ/kg 51
47
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
140
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
19
Strength to Weight: Bending, points 25
19
Thermal Diffusivity, mm2/s 11
4.2
Thermal Shock Resistance, points 28
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
62.1 to 72.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.5
Molybdenum (Mo), % 0
0.4 to 0.8
Nickel (Ni), % 0 to 1.0
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0.2 to 0.4
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0