MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. ASTM A588 Steel

C86300 bronze belongs to the copper alloys classification, while ASTM A588 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is ASTM A588 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
170
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
22
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 850
550
Tensile Strength: Yield (Proof), MPa 480
390

Thermal Properties

Latent Heat of Fusion, J/g 200
250 to 260
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 890
1410 to 1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
43 to 44
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.3 to 2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.5 to 1.6
Embodied Energy, MJ/kg 51
20 to 22
Embodied Water, L/kg 360
50 to 51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
400
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
20
Strength to Weight: Bending, points 25
19
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 28
16