MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. AWS ER90S-B3

C86300 bronze belongs to the copper alloys classification, while AWS ER90S-B3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is AWS ER90S-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
19
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 850
690
Tensile Strength: Yield (Proof), MPa 480
620

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.8
Embodied Energy, MJ/kg 51
24
Embodied Water, L/kg 360
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
1000
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
25
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 28
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.070 to 0.12
Chromium (Cr), % 0
2.3 to 2.7
Copper (Cu), % 60 to 66
0 to 0.35
Iron (Fe), % 2.0 to 4.0
93.5 to 95.9
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.4 to 0.7
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0 to 0.5