MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.4424 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.4424 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
230
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
28
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 850
800
Tensile Strength: Yield (Proof), MPa 480
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 160
960
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
13
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.4
Embodied Energy, MJ/kg 51
46
Embodied Water, L/kg 360
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
580 to 640
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
29
Strength to Weight: Bending, points 25
25
Thermal Diffusivity, mm2/s 11
3.5
Thermal Shock Resistance, points 28
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
68.6 to 72.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
1.2 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 1.0
4.5 to 5.2
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
1.4 to 2.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0