MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.4823 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
3.4
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 850
620
Tensile Strength: Yield (Proof), MPa 480
290

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 920
1400
Melting Onset (Solidus), °C 890
1360
Specific Heat Capacity, J/kg-K 420
490
Thermal Conductivity, W/m-K 35
17
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
16
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 3.0
3.0
Embodied Energy, MJ/kg 51
43
Embodied Water, L/kg 360
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
17
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
200
Stiffness to Weight: Axial, points 7.8
15
Stiffness to Weight: Bending, points 20
26
Strength to Weight: Axial, points 30
23
Strength to Weight: Bending, points 25
21
Thermal Diffusivity, mm2/s 11
4.5
Thermal Shock Resistance, points 28
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
60.9 to 70.7
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
3.0 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0