MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 2.4951 Nickel

C86300 bronze belongs to the copper alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
34
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 850
750
Tensile Strength: Yield (Proof), MPa 480
270

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 160
1150
Melting Completion (Liquidus), °C 920
1360
Melting Onset (Solidus), °C 890
1310
Specific Heat Capacity, J/kg-K 420
460
Thermal Conductivity, W/m-K 35
12
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
60
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.0
9.3
Embodied Energy, MJ/kg 51
130
Embodied Water, L/kg 360
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
200
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
190
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 30
25
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 11
3.1
Thermal Shock Resistance, points 28
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0 to 0.3
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 60 to 66
0 to 0.5
Iron (Fe), % 2.0 to 4.0
0 to 5.0
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Nickel (Ni), % 0 to 1.0
65.4 to 81.7
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.2 to 0.6
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0