MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN AC-42000 Aluminum

C86300 bronze belongs to the copper alloys classification, while EN AC-42000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN AC-42000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
59 to 91
Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 14
1.1 to 2.4
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 850
170 to 270
Tensile Strength: Yield (Proof), MPa 480
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 200
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 920
610
Melting Onset (Solidus), °C 890
600
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 35
160
Thermal Expansion, µm/m-K 20
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
130

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 360
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
2.8 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
64 to 370
Stiffness to Weight: Axial, points 7.8
15
Stiffness to Weight: Bending, points 20
53
Strength to Weight: Axial, points 30
18 to 28
Strength to Weight: Bending, points 25
26 to 35
Thermal Diffusivity, mm2/s 11
66
Thermal Shock Resistance, points 28
7.9 to 12

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
89.9 to 93.3
Copper (Cu), % 60 to 66
0 to 0.2
Iron (Fe), % 2.0 to 4.0
0 to 0.55
Lead (Pb), % 0 to 0.2
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.65
Manganese (Mn), % 2.5 to 5.0
0 to 0.35
Nickel (Ni), % 0 to 1.0
0 to 0.15
Silicon (Si), % 0
6.5 to 7.5
Tin (Sn), % 0 to 0.2
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 22 to 28
0 to 0.15
Residuals, % 0 to 1.0
0 to 0.15