MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. CR003A Copper

Both C86300 bronze and CR003A copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 63% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is CR003A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 14
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 850
230
Tensile Strength: Yield (Proof), MPa 480
140

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 920
1090
Melting Onset (Solidus), °C 890
1040
Specific Heat Capacity, J/kg-K 420
390
Thermal Conductivity, W/m-K 35
380
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
100
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 51
41
Embodied Water, L/kg 360
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
31
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
83
Stiffness to Weight: Axial, points 7.8
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 30
7.1
Strength to Weight: Bending, points 25
9.3
Thermal Diffusivity, mm2/s 11
110
Thermal Shock Resistance, points 28
8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Antimony (Sb), % 0
0 to 0.00040
Arsenic (As), % 0
0 to 0.00050
Bismuth (Bi), % 0
0 to 0.00020
Copper (Cu), % 60 to 66
99.954 to 100
Iron (Fe), % 2.0 to 4.0
0 to 0.0010
Lead (Pb), % 0 to 0.2
0 to 0.00050
Manganese (Mn), % 2.5 to 5.0
0
Nickel (Ni), % 0 to 1.0
0
Oxygen (O), % 0
0 to 0.040
Selenium (Se), % 0
0 to 0.00020
Silver (Ag), % 0
0 to 0.0025
Sulfur (S), % 0
0 to 0.0015
Tellurium (Te), % 0
0 to 0.00020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0