MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. SAE-AISI 1008 Steel

C86300 bronze belongs to the copper alloys classification, while SAE-AISI 1008 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is SAE-AISI 1008 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
93 to 100
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
22 to 33
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 850
330 to 370
Tensile Strength: Yield (Proof), MPa 480
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 920
1470
Melting Onset (Solidus), °C 890
1430
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
62
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 51
18
Embodied Water, L/kg 360
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
78 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
92 to 260
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
12 to 13
Strength to Weight: Bending, points 25
13 to 15
Thermal Diffusivity, mm2/s 11
17
Thermal Shock Resistance, points 28
10 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
99.31 to 99.7
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.3 to 0.5
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0