MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. SAE-AISI 9255 Steel

C86300 bronze belongs to the copper alloys classification, while SAE-AISI 9255 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is SAE-AISI 9255 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
21
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 850
680
Tensile Strength: Yield (Proof), MPa 480
390

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
46
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
1.5
Embodied Energy, MJ/kg 51
20
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
400
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
24
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 28
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.51 to 0.59
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
96.2 to 97
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.7 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
1.8 to 2.2
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0