MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. C90200 Bronze

Both C86300 bronze and C90200 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 64% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
70
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 14
30
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 850
260
Tensile Strength: Yield (Proof), MPa 480
110

Thermal Properties

Latent Heat of Fusion, J/g 200
200
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 920
1050
Melting Onset (Solidus), °C 890
880
Specific Heat Capacity, J/kg-K 420
370
Thermal Conductivity, W/m-K 35
62
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
13

Otherwise Unclassified Properties

Base Metal Price, % relative 23
34
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.0
3.3
Embodied Energy, MJ/kg 51
53
Embodied Water, L/kg 360
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
63
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
55
Stiffness to Weight: Axial, points 7.8
7.0
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 30
8.3
Strength to Weight: Bending, points 25
10
Thermal Diffusivity, mm2/s 11
19
Thermal Shock Resistance, points 28
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 60 to 66
91 to 94
Iron (Fe), % 2.0 to 4.0
0 to 0.2
Lead (Pb), % 0 to 0.2
0 to 0.3
Manganese (Mn), % 2.5 to 5.0
0
Nickel (Ni), % 0 to 1.0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.2
6.0 to 8.0
Zinc (Zn), % 22 to 28
0 to 0.5
Residuals, % 0 to 1.0
0 to 0.6