MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. S31254 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while S31254 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
40
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 850
720
Tensile Strength: Yield (Proof), MPa 480
330

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 160
1090
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 420
460
Thermal Conductivity, W/m-K 35
14
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
28
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.0
5.5
Embodied Energy, MJ/kg 51
74
Embodied Water, L/kg 360
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
240
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
270
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
25
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 11
3.8
Thermal Shock Resistance, points 28
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 60 to 66
0.5 to 1.0
Iron (Fe), % 2.0 to 4.0
51.4 to 56.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 6.5
Nickel (Ni), % 0 to 1.0
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0