MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. S35500 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
14
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 850
1330 to 1490
Tensile Strength: Yield (Proof), MPa 480
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.5
Embodied Energy, MJ/kg 51
47
Embodied Water, L/kg 360
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
3610 to 4100
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
47 to 53
Strength to Weight: Bending, points 25
34 to 37
Thermal Diffusivity, mm2/s 11
4.4
Thermal Shock Resistance, points 28
44 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
73.2 to 77.7
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0 to 1.0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0