MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. S42300 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
330
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
9.1
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 850
1100
Tensile Strength: Yield (Proof), MPa 480
850

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 160
750
Melting Completion (Liquidus), °C 920
1470
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.2
Embodied Energy, MJ/kg 51
44
Embodied Water, L/kg 360
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
93
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
1840
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
39
Strength to Weight: Bending, points 25
30
Thermal Diffusivity, mm2/s 11
6.8
Thermal Shock Resistance, points 28
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.27 to 0.32
Chromium (Cr), % 0
11 to 12
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
82 to 85.1
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 1.0
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0