MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. S44725 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while S44725 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
22
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 42
81
Tensile Strength: Ultimate (UTS), MPa 850
500
Tensile Strength: Yield (Proof), MPa 480
310

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 51
44
Embodied Water, L/kg 360
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
99
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
240
Stiffness to Weight: Axial, points 7.8
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
18
Strength to Weight: Bending, points 25
18
Thermal Diffusivity, mm2/s 11
4.6
Thermal Shock Resistance, points 28
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
25 to 28.5
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
67.6 to 73.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 0.4
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 1.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.26
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0