MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. ASTM A182 Grade F3V

C86500 bronze belongs to the copper alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
20
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 530
660
Tensile Strength: Yield (Proof), MPa 190
470

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
470
Melting Completion (Liquidus), °C 880
1470
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 86
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 25
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.2
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.3
Embodied Energy, MJ/kg 48
33
Embodied Water, L/kg 330
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
590
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 28
10
Thermal Shock Resistance, points 17
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 1.5
0
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0
2.8 to 3.2
Copper (Cu), % 55 to 60
0
Iron (Fe), % 0.4 to 2.0
94.4 to 95.7
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0