MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. EN 1.4841 Stainless Steel

C86500 bronze belongs to the copper alloys classification, while EN 1.4841 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is EN 1.4841 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
32
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 530
650
Tensile Strength: Yield (Proof), MPa 190
260

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
1150
Melting Completion (Liquidus), °C 880
1380
Melting Onset (Solidus), °C 860
1340
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 86
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.3
Embodied Energy, MJ/kg 48
62
Embodied Water, L/kg 330
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 180
170
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 28
4.0
Thermal Shock Resistance, points 17
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 55 to 60
0
Iron (Fe), % 0.4 to 2.0
47.1 to 55.5
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0 to 2.0
Nickel (Ni), % 0 to 1.0
19 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
1.5 to 2.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0