MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. EN 1.5510 Steel

C86500 bronze belongs to the copper alloys classification, while EN 1.5510 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is EN 1.5510 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
11 to 21
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 530
450 to 1600
Tensile Strength: Yield (Proof), MPa 190
310 to 520

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 86
51
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 25
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 48
19
Embodied Water, L/kg 330
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
46 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 180
260 to 710
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
16 to 57
Strength to Weight: Bending, points 18
17 to 39
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 17
13 to 47

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 1.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.25 to 0.3
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 55 to 60
0 to 0.25
Iron (Fe), % 0.4 to 2.0
97.9 to 99.149
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0.6 to 0.9
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0