MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. SAE-AISI 9260 Steel

C86500 bronze belongs to the copper alloys classification, while SAE-AISI 9260 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is SAE-AISI 9260 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
21
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 530
660
Tensile Strength: Yield (Proof), MPa 190
380

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 880
1430
Melting Onset (Solidus), °C 860
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 86
45
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 25
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 48
20
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
380
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 28
12
Thermal Shock Resistance, points 17
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0.56 to 0.64
Copper (Cu), % 55 to 60
0
Iron (Fe), % 0.4 to 2.0
96.1 to 96.9
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0.75 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
1.8 to 2.2
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0