MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. C87800 Brass

Both C86500 bronze and C87800 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 72% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
25
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 530
590
Tensile Strength: Yield (Proof), MPa 190
350

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 880
920
Melting Onset (Solidus), °C 860
820
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 86
28
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 25
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
27
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 48
44
Embodied Water, L/kg 330
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
540
Stiffness to Weight: Axial, points 7.4
7.4
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 28
8.3
Thermal Shock Resistance, points 17
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 1.5
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 55 to 60
80 to 84.2
Iron (Fe), % 0.4 to 2.0
0 to 0.15
Lead (Pb), % 0 to 0.4
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0.1 to 1.5
0 to 0.15
Nickel (Ni), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 1.0
0 to 0.25
Zinc (Zn), % 36 to 42
12 to 16
Residuals, % 0 to 1.0
0 to 0.5