MakeItFrom.com
Menu (ESC)

C86500 Bronze vs. S35000 Stainless Steel

C86500 bronze belongs to the copper alloys classification, while S35000 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86500 bronze and the bottom bar is S35000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
2.3 to 14
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 530
1300 to 1570
Tensile Strength: Yield (Proof), MPa 190
660 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
900
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 86
16
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
14
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 48
44
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
28 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1070 to 3360
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
46 to 56
Strength to Weight: Bending, points 18
34 to 38
Thermal Diffusivity, mm2/s 28
4.4
Thermal Shock Resistance, points 17
42 to 51

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
16 to 17
Copper (Cu), % 55 to 60
0
Iron (Fe), % 0.4 to 2.0
72.7 to 76.9
Lead (Pb), % 0 to 0.4
0
Manganese (Mn), % 0.1 to 1.5
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0 to 1.0
4.0 to 5.0
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 36 to 42
0
Residuals, % 0 to 1.0
0